

ZSR2184-LoRa 无线测控终端

用户手册

月 录

前言	3
版权声明	3
版本信息	3
相关文档	未定义书签。
一. 产品综述	4
1.ZSR2184 产品特点2.ZSR2184 RTU主要技术参数	6
3.ZSR2184 外观说明	
三. ZSR2184 RTU 使用指南	
四. 数据采集中心二次开发说明	18

前言

感谢您使用成都众山科技有限公司提供的ZSR2184系列产品。 使用前请务必仔细阅读此用户手册,您将领略其完善强大的功能和简洁的操作方法。

本设备主要基于433M lora无线自组网络实现数据采集与传输,请用户按照手册中的技术规格和 性能参数进行使用,同时注意使用无线产品应该关注的一般安全事项(参见附录A),本公司不承 担由于用户不正常操作或不恰当使用造成的财产或者人身伤害责任。

在未声明之前,本公司有权根据技术发展的需要对本手册内容进行更改。

版权声明

本手册版权属于成都众山科技有限公司,任何人未经我公司书面同意复制将承担相应法律责任。

版本信息

文档名称: ZSR2184 RTU用户手册

版本: 01.00

修改日期: 2017年11月14日

一、ZSR2184 RTU 产品综述

ZSR2184 是一款使用 433M-lora 无线网络进行远程模拟量/数字量采集及远程继电器控制的无 线测控终端(RTU), ZSR2184 内置工业级 433Mhz 无线传输引擎和嵌入式处理器,实现了现场 数据采集/无线传输/远程控制的一体化高性价比解决方案。

ZSR2184 提供 8 路模拟量 $(0^2 20 \text{mA})$ 信号采集、4 路开关量信号采集,可以接续各种现场传感器 的模拟信号及开关量信号,支持阈值判别预警、状态触发报警等功能,4路继电器输出通道, 可用于外部设备的开关控制, ZSR2184 提供一路 RS232 串口, 用于参数配置, 还提供一路 RS485 接口,可连接各种用户设备如PLC,单片机,智能仪表等,通信协议采用 modbus RTU 协议,兼 容性更强,简单易用。

1) ZSR2184 RTU 产品特点

- Ⅰ 4路数字、8路模拟量输入、4路继电器输出
- 内置工业级嵌入式 CPU 以完成复杂的网络协议
- 性能稳定,保证野外恶劣环境下长期可靠工作,内置看门狗电路。 Т
- 433M Lora 无线自组网通信,最远可达 8KM
- 提供一路 RS485 串口,用于串口仪表的数据采集,波特率可选择,从 300bps 到 115200bps,开始位/停止位/奇偶校验可选。
- 支持图形化参数配置,内置 EEPROM 存储器,长期保存用户配置的参数 Ī
- 抗干扰设计,适合电磁环境恶劣的应用场合 ı
- 工作温度范围宽,可工作在-25°C to +70°C 环境中
- 采用 modbus RTU 协议,兼容性更强,简单易用
- ı 自动判断采集到的开关量/模拟量是否超过阈值,并自动发送告警信息
- ı 预警周期、预警值可以灵活设置
- 与我公司的 lora 网关配套使用,可轻松实现数据接入互联网
- 支持接入多种组态软件接入

1. 433Mhz LoRa无线自组网络简介

LoRa 是 LPWAN(低功耗广域网 Low Power Wide Area Nerwork)通信技术中的一种,是美 国 Semtech 公司采用和推广的一种基于扩频技术的超远距离无线传输方案, LoRa 融合了数字扩 频、数字信号处理和前向纠错编码技术,拥有前所未有的性能,设计人员便可做到远距离和低 功耗两者均兼顾,最大程度地实现更长距离和更低功耗的数据通信,使得嵌入式无线通信领域 的局面发生了彻底的改变。

LoRa 的主要特点:

1) 高灵敏度、低功耗

高达 157db 的链路预算使其通信距离可达 15 公里(与环境有关)。其接收电流仅 10mA, 睡眠电流 200nA, 这大大延迟了电池的使用寿命。

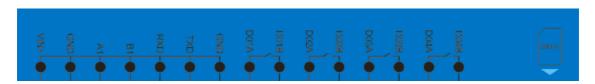
2) 系统容量大

网关是节点与 IP 网络之间的桥梁(通过 2G/3G/4G 或者 Ethernet)。每个网关每天可以 处理 500 万次各节点之间的通信(假设每次发送 10Bytes, 网络占用率 10%)。如果把网关 安装在现有移动通信基站的位置,发射功率 20dBm (100mW),那么在建筑密集的城市环 境可以覆盖 2 公里左右,而在密度较低的郊区,覆盖范围可达 10 公里。

这些关键特征使得 LoRa 技术非常适用于要求功耗低、距离远、大量连接以及定位跟踪等 的物联网应用,如智能抄表、智能停车、车辆追踪、宠物跟踪、智慧农业、智慧工业、智慧城 市、智慧社区等等应用和领域。

2.ZSR2184 RTU 主要技术参数

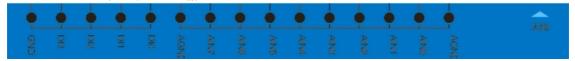
特征		描述	
电源供电		DC6~30V	
		12VDC 供电:	
电源功耗		峰值电流:最大 1A (通信时)	
		工作电流: 50mA-340mA	
		在线空闲状态工作电流: <50mA	
数据传输网络		433M LORA 自组网	
天线接口		5 0 Ω SMA天线连接头-外螺内针	
	模拟量输入	4路0-20mA,可支持0-5V,需单独订货	
采集接口	开关量输入	4路光电隔离开关量输入	
		4路独立的继电器控制输出	
	继电器输出	继电器最大负载电流: 250VAC/30VDC@5A	
串行数据接口(仪表采集)		RS485电平;速率: 300-115200bps;	
		数据位: 7/8; 奇偶校验: N/E/O; 停止位: 1/2位	
		RS232电平;速率: 300-115200bps;	
串行数据接口(参数配置)		数据位: 7/8; 奇偶校验: N/E/O; 停止位: 1/2位	
		工作环境温度 -25°C to +70°C	
温度范围		储存温度 -40°C ~+85°C	
		相对湿度 95% (无凝结)	
de control de la la		尺寸: 长: 145mm 宽: 90mm 高: 40mm	
物理特性		重量: 200g	



3. ZSR2184 RTU 外观说明

接口说明:

在 ZSR2184 RTU 面板上,主要包含指示灯,和数据接口及电源接口 在设备正面的标贴上已经标示出了各个端子的含义,如下图:



VIN:电源输入正极 GND:电源输入负极

A1 B1: RS485 采集口,用于采集仪器仪表的串口数据

RXD TXD GND: RS232 串口,参数配置用

DO1A-DO1B: 第一路继电器输出 DO2A-DO2B: 第二路继电器输出 DO3A-DO3B: 第二路继电器输出 DO4A-DO5B: 第二路继电器输出

AGND:模拟量输入地

AIN0~AIN7: 8路模拟量输入接口

DI0~DI3: 4 路开关量输入 GND: 开关量输入公共地

LED 指示灯说明:

Pow:整机的电源指示灯

SYS-设备运行指示,系统灯闪烁表示 RTU 设备正在运行,其闪烁频率表示 RTU 设备处 于何种工作模式,参见本手册 ZSR2184 RTU 工作模式说明部分。

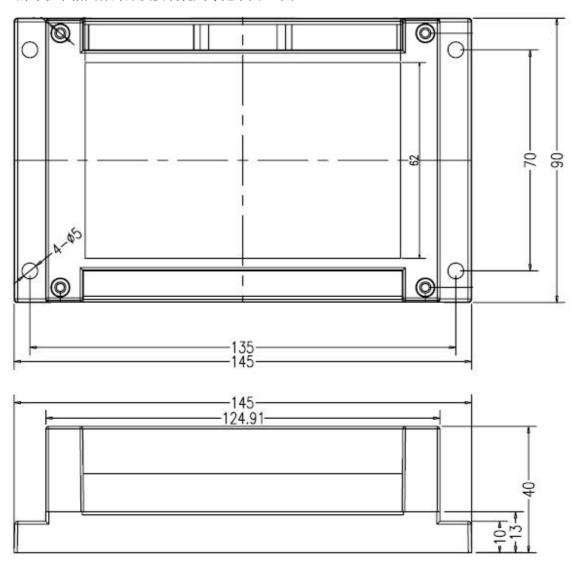
LORA-无线模块的状态指示灯,用来指示 LORA 网络的状态

天线说明:

ZSR2184 RTU的天线安装头为标准的 5 0 Ω天线连接头。可以旋转连接处的螺帽来安装或拆 卸天线。

ZSR2184 RTU 物品清单

单台ZSR2184 RTU包括下列组成部分:


物品名称		_ 数量
ZSR2184 R	RTU	1 个
433M天线		1 根

请在开箱后及时清点物品数量。

二. ZSR2184 RTU产品机械尺寸

ZSR2184 采用全塑料外壳,适应各种工作环境,在机壳两侧设计有固定的安装孔,机壳背面有标准 的导轨卡槽具体外形及安装孔尺寸见下图:单位 mm

三. ZSR2184-LORA RTU 组网指南

ZSR2184-LORA RTU 采用 433Mhz 自组网络进行数据,整个应用架构,可以分为两种

架构 1: 本地近距离采集,结构如下图所示,此种方案适合监控中心与现场采集点距离较近的场合使用, 现场采集点的 ZSR2184 通过 lora 网络将采集的接口数据传输至监控中心(监控中心的服务器需外接一台 LORA DTU (ZSL310) 用于接收现场采集点的数据)

架构 2: 远距离距离采集,结构如下图所示,此种方案适合监控中心与现场采集点距离很远的场合使用, 现场采集点的 ZSR2184 通过 lora 网络将采集的接口数据传输至 lora 网关, lora 网关再将数据通过 GPRS/4G 网络中转至远端的服务器

四、ZSR2184 RTU使用指南

1. ZSR2184-lora RTU 参数配置说明

用户在使用ZSR2184 RTU之前,应先对ZSR2184 RTU的参数进行适当的配置。 操作过程如下:

- (1) RTU 上电, RTU 的 SYS 工作指示灯闪烁, 表示 RTU 已经开始工作。
- (2) 连接好 RS232 串口线
- (3) 启动 RTU 配置软件(首次使用配置软件时,请先阅读配置软件文件夹内的操作说明)

设置程序可以实现 RTU 参数的读取和设置,并且可以对 RTU 的工作状态进行测试,软件有"通信参数设 置"、"透明传输测试"、"控制模式测试""扩展参数设置"四个页面,点击某个页面即可进入相应功能界面, RTU 设置程序会自动向 RTU 发送各种工作模式切换命令,以便于 RTU 能够配合该软件进行相应的操作 和测试。

RTU 设置程序通过出厂配备的串口线与 RTU 进行通信,从而完成各种操作。应在 RTU 设置程序里面选 择正确的串口波特率,以使计算机串口与 RTU 工作在相同的波特率, RTU 出厂时的默认波特率为 9600。

请确定当前所用串口的串口号,修改串口号,并保持串口波特率一致,确认后点击"打开串口"。

串口打开成功后在软件的最下方边沿会显示串口打开成功。

2.RTU通信参数的读取与配置

在"通信参数设置"页中,点击右上角的"读取"按钮,即可显示出RTU内部无线通信方面的所有参数值, 如下图

#□设置 COM1 打开#□ 9600 ▼ 8N1 ▼ 读取 设置				
	参数值	参数相关说明		
<基本参数>				
LoRa频率		单位为Hz,默认为433Mhz,不能轻易更改		
LoRa发射功率		0-20DB,默认20DB		
LoRa性能模式		同一网络下的LoRa设备"性能模式"必须设为一致;		
<串口参数>				
串口波特率		支持1200-38400波特率,默认9600		
串口配置		数据位,停止位,奇偶校验设置		
<网络参数>				
网络ID		网络编号,只有网络ID相同的设备间才能相互通信		
T 点ID		设备自身的ID编号 , 1~65534 ; 一个网络最多6553		
组播ID		可以将两个或多个lora设备进行编组,组播ID就是组		
目标ID		发送数据到指定的节点或组播ID;设为65535时,为		
数据接收模式		选择只接收自己ID、广播、组播		
节点中继选择		配置设备为节点、中继或节点中继自适应		
RSSI輸出允许		信号强度输出允许,开启后串口输出网络信号强度		

成都众山科技有限公司 电话: 028-85583895 地址:成都市高新区天府大道中段天府三街69号

双击要修改的参数值,直接输入或修改相应的参数值,点击右上角的"设置"按钮即可完成参数的设置。 要使新参数生效,必须复位RTU或者给RTU重新上电。

(参数设置成功后,在下面的信息窗口中会有提示参数设置成功)

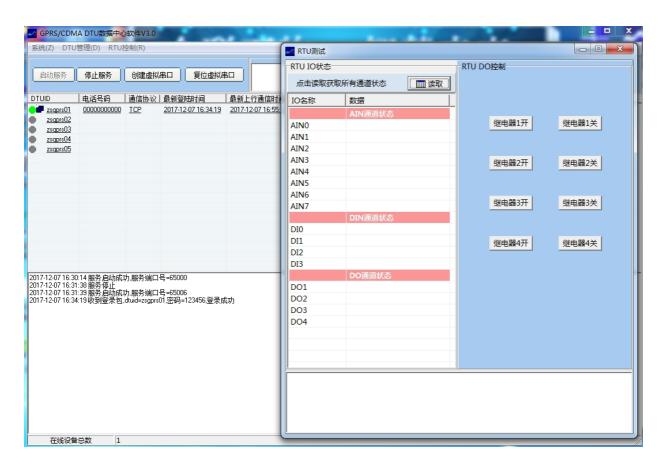
*恢复RTU出厂默认设置

点击"恢复出厂默认设置",可以使RTU的参数恢复出厂时的参数。

3.ZSR2184 扩展参数描述

扩展参数页面主要用于配置RTU接口相关的参数,将配置软件切换到"扩展参数设置"页面,点击 读取,将读取出当前的参数值,参数页面如下图:

*参数说明栏已注释了各项参数的含义,用户可以根据实际的使用情况来设置各项参数的值 参数配置完成后需要重启设备


3) 接口数据采集测试

ZSR2184 有两种方式来进行数据采集/控制测试,一种是连接设备的 RS232 串口,通过我公司提供的串 口测试工具来完成测试,另一种是利用数据接收中心,进行远程数据采集/控制测试

b. 数据接收中心,进行远程数据采集/控制测试,界面如下,具体操作方法详见软件操作手册

五. 数据采集中心二次开发说明

ZSR2184 RTU串口端对于用户机完全透明,可以看作用户机的串口直接与数据采集中心之间进行 连接,用户机上收发的是用户自己定义的原始数据。AI\DI以及DO继电器控制都是通过modbus rtu 协 议来完成,具体的modbus通信协议见附录

我们提供了数据中心二次开发包: ZSDXXXX DTU Easy ActiveX控件(采用架构2会用到)

它具备以下特点:

- ZSDXXXX DTU Easy 控件实现了在透明传输模式下,数据采集中心应当具备的底层数据通信功能, 它是 Windows 下的标准 ActiveX 控件,适用于 Windows 平台下多种开发工具集成,以进行透明 传输模式数据采集中心的开发。
- ZSDXXXX DTU Easy 控件提供的所有接口均为异步操作方式,容器程序调用函数后立即返回。
- ZSDXXXX DTU Easy控件内部包含一个DTU设备对列, 控件自动维护和更新DTU设备列表中各DTU 设备的状态信息。基于DTU的数据收发操作,必须基于DTU设备列表中存在的,并处于在线状 态的RTU来进ZSDXXXX DTU Easy控件的详细接口资料请参考《ZSDXXXX DTU Easy控件接口说明》 注: 在我公司产品发布光盘的\中心控件\例程 目录下提供有 VB, VC, Delphi, Cbuilder, C#五种编程开发 环境下的数据采集中心例程源代码,可供开发人员参考。

附录A:无线设备安全使用说明

必须在使用无线产品时注意下面的安全事项:

- 1)在医院或者其他敏感的场所,请观察是否有限制使用无线通信设备的标语。如果有这样的限制, 请不要使用无线设备。心脏起博器、助听设备及某些医疗设备在GSM/GPRS无线设备距离太近时可 能会收到干扰。如果不能确认是否存在潜在的危险,请与这些医疗设备厂家联系,确认其设备是否 具备必要的屏蔽保护措施。
- 2) 在飞机的飞行及启降过程中均不能使用设备。因为无线设备发射的电磁波可能对飞机上的仪器或设 备产生干扰。
- 3) 在加气站/加油站或其他有易燃易爆物品的场合中不能使用无线设备。因为电子设备在运行过程中产 生的细微电火花可能会导致危险。

附录B: MODBUS rtu 协议